
Effective hydraulic conductivity of bounded, strongly
heterogeneous porous media

Evangelos K. Paleologos,1 Shlomo P. Neuman, and Daniel Tartakovsky
Department of Hydrology and Water Resources, University of Arizona, Tucson

Abstract. We develop analytical expressions for the effective hydraulic conductivity Ke of
a three-dimensional, heterogeneous porous medium in the presence of randomly
prescribed head and flux boundaries. The log hydraulic conductivity Y forms a Gaussian,
statistically homogeneous and anisotropic random field with an exponential
autocovariance. By effective hydraulic conductivity of a finite volume in such a field, we
mean the ensemble mean (expected value) of all random equivalent conductivities that one
could associate with a similar volume under uniform mean flow. We start by deriving a
first-order approximation of an exact expression developed in 1993 by Neuman and Orr.
We then generalize this to strongly heterogeneous media by invoking the Landau-Lifshitz
conjecture. Upon evaluating our expressions, we find that Ke decreases rapidly from the
arithmetic mean KA toward an asymptotic value as distance between the prescribed head
boundaries increases from zero to about eight integral scales of Y. The more heterogeneous
is the medium, the larger is Ke relative to its asymptote at any given separation distance.
Our theory compares well with published results of spatially power-averaged expressions
and with a first-order expression developed intuitively by Kitanidis in 1990.

Introduction

We consider the steady state flow of groundwater in a ran-
domly heterogeneous flow domain, V. The Darcy flux q(x) and
the hydraulic head h(x) obey the continuity equation and Dar-
cy’s law,

¹ z q~x! 5 0 q~x! 5 2K~x!¹h~x!, (1)

subject to the boundary conditions

h~x! 5 H~x! on GD (2)

2q~x! z n~x! 5 Q~x! on GN. (3)

Here K(x) is a scalar hydraulic conductivity which varies ran-
domly in space, H(x) is a randomly prescribed head on Dir-
ichlet boundary segments GD, Q(x) is a randomly prescribed
flux into V across Neumann boundary segments GN, n(x) is a
unit vector outward normal to the boundary G, and G is the
union of GD and GN. Both H(x) and Q(x) are prescribed in a
statistically independent manner.
Due to the random nature of K(x), H(x), and Q(x), (1)–(3)

constitute a stochastic system of equations. Taking the ensem-
ble mean (expectation), expressed by angle brackets, of (1)–(3)
yields the deterministic system

¹ z ^q~x!& 5 0 ^q~x!& 5 2^K~x!&¹^h~x!& 1 r~x! (4)

subject to

^h~x!& 5 ^H~x!& on GD (5)

2^q~x!& z n~x! 5 ^Q~x!& on GN. (6)

The term r(x) was termed residual flux by Neuman and Orr
[1993]. According to their equation (F7), it is given exactly by

r~x! 5 E
V

a~x, x!¹x^h~x!& dx

1 E
V

b~x, x!r~x! dx (7)

where a(x, x) and b(x, x) are kernels independent of ^h(x)&.
The latter are defined as

a(x, x) 5 ^K9~x!K9~x!ÖÖx
T&~x, x!& (8)

b(x, x) 5 ^K9~x!ÖÖx
T&~x, x!& (9)

where primed quantities represent zero mean random fluctu-
ations and & is the random Green’s function associated with
(1)–(3). Both kernels are positive semidefinite tensors of sec-
ond rank, the first symmetric, the second nonsymmetric. Since
r(x) and hence ^q(x)& depend on mean head gradients at points
other than x, the above problem is nonlocal. Since ^q(x)& is not
proportional to ¹^h(x)&, the ensemble mean flux is generally
non-Darcian.
Neuman and Orr [1993] have pointed out that for r(x) (and

hence ^q(x)&) to be Darcian (and hence local) it is necessary
that there exists a symmetric, positive semidefinite tensor k(x)
of second rank whose principal values (eigenvalues) do not
exceed ^K(x)& and which is additionally independent of ^h(x)&
and its gradient, such that

r~x! 5 k~x!¹^h~x!&. (10)

Then, and only then, is it strictly proper to write

^q~x!& 5 2K e~x!¹^h~x!& (11)

where Ke(x) is a symmetric, positive definite ‘‘effective (or
equivalent) hydraulic conductivity tensor (dyadic)’’ given by
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Ke~x! 5 ^K~x!&I 2 k~x!, (12)

I being the identity tensor. Note that Ke(x) does not generally
apply to a single realization of the random functions entering
into (1)–(3). Instead, it relates the flux q(x) averaged over the
ensemble of all realizations to a similarly averaged hydraulic
gradient at x. Only if the random fields K(x), ¹h(x), and q(x)
are ergodic can one interpret Ke in (11) as relating spatial
averages of q to those of ¹h over a sufficiently large volume of
porous medium. Neuman and Orr discussed several conditions
under which (11) is strictly valid. They showed that in the limit
as V tends to v, where v is the smallest scale on which K(x),
¹h(x), and q(x) have operational meaning, Ke(x) tends to
^K(x)&I.
The case most often discussed in the stochastic literature is

that of an unbounded domain V` in which the hydraulic con-
ductivity field can be decomposed into a constant mean,
^K(x)& [ ^K& 5 const, and a zero-mean statistically homoge-
neous perturbation K9(x). Here flow is controlled by boundary
conditions at infinity, which result in a uniform mean hydraulic
gradient ¹^h(x)& [ J 5 const. Then ^q& and ^r& are also con-
stant, and so are the kernels a(x, x) and b(x, x). As such, the
latter can be evaluated at arbitrary x. By doing so at the center,
x 5 0, of the mean uniform flow field, b(0, x) becomes odd in
x and the second integral in (7) vanishes. Hence we obtain

^q& 5 2K eJ Ke 5 ^K&I 2 k (13)

where

k 5 E
V

^K9~x!K9~x!ÖÖx
T&~x, x!& ux50 dx (14)

and all terms are constant. Under the ergodic hypothesis,
which in this case appears justified, one can interpret ^q& and J
as spatial averages over a block of porous medium that is large
compared to the spatial correlation (integral) scale of K(x).
The smallest block size that satisfies this equivalence between
ensemble and spatial averages of q(x) and ¹h(x), to some
acceptable tolerance, qualifies as a representative elementary
volume (REV) for these particular flow conditions. For blocks
of size REV or larger, the spatial averages of q(x) and ¹h(x)
vary slowly enough with block size to justify treating them as
deterministic; the same, of course, applies to Ke. For blocks of
scale smaller than an REV, the equivalent hydraulic conduc-
tivity is a random variable. We consider below the ensemble
mean Ke of such random quantities and refer to it as ‘‘effec-
tive’’ block conductivity.

In this paper we wish to focus on two questions: what con-
stitutes an REV, and what happens to Ke in (13) on sub-REV
scales (where the flow domain V is smaller than an REV).
These questions have so far not been investigated analytically
except (as mentioned earlier) in the limit as V tends to v.
Otherwise, published analytical studies of bounded domains
have focused largely on the effects that boundaries may have
on second moments involving head [Naff and Vecchia, 1986;
Rubin and Dagan, 1988, 1989]. More directly relevant to our
concerns is the work of Kitanidis [1990]. He derived equations
which must be satisfied by the effective hydraulic conductivity
tensor of a nonrandom, periodic K(x) field via volume aver-
aging and a modification of the Taylor-Aris method of mo-
ments. Kitanidis then extended his approach to random, sta-
tistically homogeneous K(x) fields exhibiting small fluctuations
by invoking [Kitanidis, 1990, p. 1204] ‘‘intuitive arguments
rather than rigorous mathematical analysis.’’ We shall see later
that, despite this lack of rigor, the solution of Kitanidis as
implemented numerically by Dykaar and Kitanidis [1992] ap-
pears to capture correctly the effect of boundaries on the
effective hydraulic conductivity of mildly heterogeneous ran-
dom media.
Many numerical studies have been devoted to the issue of

upscaling [e.g., Desbarats and Dimitrakopoulos, 1990; Rubin
and Gómez-Hernández, 1990; Durlofsky, 1991; Desbarats, 1992;
Fenton and Griffiths, 1993]. Upscaling is the process of assign-
ing equivalent properties to the grid blocks of a numerical
model within which these properties are known to vary. Several
authors [Journel et al., 1986; Deutsch, 1989; Gómez-Hernández
and Gorelick, 1989; Ababou and Wood, 1990; Desbarats, 1992]
have concluded, based on numerical experiments, that block
hydraulic conductivity may be written as a power average, or
a-norm, of hydraulic conductivity values according to Ka 5
{Ka}1/a, where {} represents ensemble (in the case of Des-
barats [1992] spatial) average and a is an empirical parameter.
A more rigorous theoretical approach to the upscaling of
mildly fluctuating random hydraulic conductivities has been
proposed by Indelman and Dagan [1993a, b]. However, their
‘‘upscaling is carried out in a region sufficiently far from the
boundary’’ [Indelman and Dagan [1993a, p. 920], so that its
effect is not felt. This may explain why the upscaled hydraulic
conductivity in Figure 5 of Indelman [1993] tends to the geo-
metric mean of K(x), rather than to its arithmetic mean as
required by theory [Neuman and Orr, 1993], when the domain
size approaches zero.
In this paper, we derive an explicit expression for the effec-

tive hydraulic conductivity of a bounded, randomly heteroge-
neous domain based on (13) and (14). We first derive a lin-
earized expression which is valid only for mildly heterogeneous
media. We then extend this expression to strongly heteroge-
neous media by adopting a conjecture that has proven to work
well for large domains. We conclude by evaluating our expres-
sions numerically and comparing them with previously pub-
lished results.

Linearized Analysis
We consider a flow domain V bounded by two parallel,

planar Dirichlet boundaries of equal shape and size (Figure 1).
The boundaries are connected by a surface normal to them
which acts as a Neumann boundary. They are spaced a distance
2L apart along the x1 coordinate of a Cartesian system that has
its origin midway between the planes. The mean head ^H& is

Figure 1. Bounded flow domain V.
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uniform on each Dirichlet boundary. On the Neumann bound-
ary, the mean normal flux is equal to zero, ^Q& 5 0. The log
hydraulic conductivity, Y(x) 5 ln K(x), in V is a statistically
homogeneous field with mean ^Y& and variance sY

2 , both con-
stant. The covariance of Y(x), CY(x 2 x) 5 ^Y9(x)Y9(x)&, is
exponential and exhibits elliptical anisotropy with principal
directions parallel to the coordinates.
It has been shown by Neuman and Orr [1993] that, under

these circumstances, the mean flux has only one nonzero com-
ponent parallel to x1 which can be expressed by means of a
scalar form of Darcy’s law,

^q1~ x2, x3!& 5 2Ke1~ x2, x3!J1
(15)

Ke1~ x2, x3! 5 ^K& 2 k1~ x2, x3!.

Here J1 is the constant mean hydraulic gradient imposed
throughout V by the Dirichlet boundaries, Ke1( x2, x3) is an
effective directional hydraulic conductivity, and (14) implies
that k1(x2, x3) is given by

k1~ x2, x3! 5 E
V

^K9~x!K9~x!­2&~x, x!/­ x1­x1& dx . (16)

Since homogeneity prevails on planes parallel to the Dirichlet
boundaries with ^q2& 5 ^q3& 5 0, and by virtue of the con-
tinuity equation (1), we have that d^q1&/dx1 5 0. Hence ^q1&
(and consequently, Ke1) in (15) is constant in the x1 direction.
In (16) the integrand is thus evaluated at an arbitrary value of
x1, and Green’s function &(x, x) is the random solution of
(1)–(3) due to a point source of unit strength at x, given by the
Dirac delta function d(x 2 x), subject to homogeneous bound-
ary conditions H(x) 5 Q(x) [ 0. It is important to appreciate
[Neumann and Orr, 1993] that Ke1 is strictly directional and
does not form the principal component of a tensor when V is
finite.
To evaluate Ke1( x2, x3), we restrict our attention, for the

time being, to mildly heterogeneous media with sY
2 , 1. This

justifies approximating ^K& and Ke1( x2, x3) to first order in
sY
2 . As a first step, we approximate &(x, x) to zero order by
means of the deterministic Green’s function G0(x, x). The
latter is defined as the solution of (4)–(6) with r(x) set equal to
zero, due to a point source of unit strength at x, subject to
homogeneous mean boundary conditions ^H(x)& 5 ^Q(x)& [
0. Next, we take Y(x) to be Gaussian, so that [e.g., Neuman and
Orr, 1993] ^K& 5 KG exp (sY

2 / 2) and ^K9(x)K9(x)& 5 KG
2

exp (sY
2 ) {exp [CY(x 2 x)] 2 1}, where KG 5 exp ^Y& is the

geometric mean of K(x). Upon approximating these moments
to first-order in sY

2 and combining (15) and (16), we obtain the
following linearized expression for the effective conductivity,

Ke1~ x2, x3! < KGS 1 1
sY
2

2 2 E
V

CY~x 2 x!
­2G~x, x!

­ x1­x1
dxD
(17)

where G(x, x) 5 ^K&G0(x, x) satisfies ¹2G(x, x) 1 d(x 2 x) 5 0
in V, subject to homogeneous boundary conditions [Greenberg,
1971].
For Dirichlet boundaries at infinity, (17) is identical to lin-

earized expressions published earlier by Gutjahr et al. [1978],
Gelhar and Axness [1983], Neuman and Depner [1988], and

Dagan [1989] for infinite anisotropic media and by Kitanidis
[1990, equation (81)] for finite volume.
To simplify the evaluation of (17), we consider only points

( x2, x3) that are at distances of at least three integral scales of
Y(x) from the lateral Neumann boundary. At such distances,
this mean no-flow boundary has negligible effect on the flow
[Rubin and Dagan, 1989], and we are therefore justified placing
it at infinity for mathematical convenience. This renders Ke1 in
(17) independent of x, and we arbitrarily evaluate the corre-
sponding integrals at x 5 0.
The evaluation of (17) at x 5 0 for the case of lateral

Neumann boundaries at infinity is described in Appendix A.
The result can be expressed as

Ke1 5 KG@1 1 sY
2 ~1
2

2 D!# (18)

where D is a domain integral. We present below two alterna-
tive but equally valid expressions for D, based on two different
representations of the Green’s function. One alternative,
which converges rapidly for large r 5 L/l1, is developed via the
method of images in Appendix A. The corresponding expres-
sion is

D 5 1 2
r«2«3
4p O

j52`

1` E
j521

11 E
u50

2p E
r50

`

r2@1 1 ~rR!2#23/ 2

z @1 1 r uj u Î1 1 ~rR!2# exp ~2r uj u Î1 1 ~rR!2!

z exp ~2r uj 2 2j ur! dr du dj (19)

where «2 5 l2/l1, «3 5 l3/l1, R
2 5 «2

2 cos2 u 1 «3
2 sin2 u,

and l1, l2, l3 are the principal integral scales of Y(x). For
statistically isotropic media, the order of integration is reduced
by one,

D 5 1 2
r

2 O
j52`

1` E
j521

11 E
r50

`

r2~1 1 r2!23/ 2 ~1 1 r uj u Î1 1 r2!

z exp ~2r uj u Î1 1 r2! exp ~2r uj 2 2j ur! dr dj (20)

The other alternative, which converges rapidly for small r, is
developed via an eigenfunction expansion in Appendix B. The
corresponding expression is

D 5 4p O
n51

`

n2 E
0

1` E
0

1` r2

n2p2 1 @~k*2/«2!2 1 ~k*3 /«3!2# r2

z F ~21!n11 exp ~2r Î1 1 k*2! S 2r

r2~1 1 k*2! 1 n2p2

1
1

~1 1 k*2!1/ 2D 1
2r

r2~1 1 k*2! 1 n2p2G
z

dk*2dk*3
r2~1 1 k*2! 1 n2p2 . (21)

Generalization to Strongly Heterogeneous Media
Gelhar and Axness [1983] developed a first-order expression

for effective hydraulic conductivities Kei (i 5 1, 2, 3), parallel
to the principal directions of statistical anisotropy, in an infi-
nite domain V`. Whereas their result involves the spectral
density of Y(x), Neuman and Depner [1988] and Dagan [1989]
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showed that Kei depend solely on sY
2 and the integral scales of

Y(x). According to Neuman and Depner,

Kei < KGS 1 1
sY
2

2 2 FiD i 5 1, 2, 3 (22)

where

Fi 5
2sY

2

pl i
2 E

0

p/ 2 E
0

p/ 2 f i
2

fTl22f
sin f df du , (23)

l being a diagonal matrix of principal integral scales l i, and

fT~f , u ! 5 ~cos u sin f, sin u sin f, cos f). (24)

To obtain an expression valid for large sY
2 , they adopted a

conjecture used previously byGelhar and Axness [1983], similar
to that proposed earlier for isotropic fields by Landau and
Lifshitz [1960], Shvidler [1962], and Matheron [1967], that the
expression within parentheses in (22) constitutes the first two
terms in a series expansion of exp (sY

2 / 2 2 Fi), yielding

Kei < KG exp S sY
2

2 2 FiD i 5 1, 2, 3. (25)

We shall refer to the above as the Landau-Lifshitz conjec-
ture. The conjecture is rigorously valid under one-dimensional
flow where it yields the harmonic mean, KH, of K(x). It is
rigorously valid under two-dimensional flow in lognormal, sta-
tistically isotropic conductivity fields, where it yields the geo-
metric mean, KG [Matheron, 1967; see also Neuman and Orr,
1993]. Attempts to prove (25) rigorously for three-dimensional
flow in such fields have been reported by King [1989] and
Noetinger [1990]. According to Dagan [1993], all these attempts
involve some approximations. He has shown that, in this case,
the conjecture is valid at least to second order in sY

2 . Numer-
ical Monte Carlo simulations have shown that it holds at least
up to sY

2 5 7 [Neuman et al., 1992]. When (25) was applied by
Neuman and Depner [1988] to data obtained from relatively
small-scale single-hole packer tests in fractured granites, ac-
cording to which sY

2 . 7 and Y(x) is statistically anisotropic,
(25) showed consistency with the results of much larger scale
cross-hole tests conducted and interpreted independently of
the single-hole tests. Although Indelman and Abramovich
[1994] have found that statistical anisotropy renders Kei de-

pendent on the shape of the covariance function CY at second
order in sY

2 , this effect appears to be [Indelman and Abramov-
ich, 1994, p. 1862] ‘‘rather small.’’
Given these results, we feel reasonably comfortable applying

the Landau-Lifshitz conjecture to our bounded case. It trans-
forms (18) into the generalized expression

Ke1 5 KG exp @sY
2 ~1
2

2 D!#. (26)

In the limit as the distance between the Dirichlet boundaries
goes to infinity, r 3 `, (26) in conjunction with (20) yield
(Appendix A)

Ke13 K` 5 KGesY
2 /6. (27)

This is the result originally conjectured by Landau and Lifshitz
[1960], Shvidler [1962], Matheron [1967], and Gelhar and Ax-
ness [1983], whose exact proof was sought by King [1989] and
Noetinger [1990] and achieved to second-order by Dagan
[1993]. The same follows directly from (22)–(24).
In the limit as the Dirichlet boundaries approach each other,

r 3 0, the domain integral vanishes. This follows from (21)
and the Dominated Convergence Theorem, and is explained in
Appendix B. Then the effective hydraulic conductivity in (18)
reduces to the arithmetic mean, as predicted theoretically by
Neuman and Orr [1993].

Evaluation and Comparison With
Published Results
The linearized equation (18) and the generalized equation

(26) were evaluated numerically for statistically isotropic me-
dia. We evaluated (20) for r 5 L/l1 ranging from 0.01 to 50
and sY

2 ranging from 1 to 7. Results for sY
2 5 1 are listed in

Table 1. The evaluation entailed computing the domain inte-
gral D in (20) by means of Gaussian quadrature. All calcula-
tions were performed on the University of Arizona Convex
C240 with four vector processors, except for the computation-
ally intensive case of r 5 0.01, which was run on the Connec-
tion machine at Los Alamos National Laboratories. Equation
(19) for anisotropic media involves an additional integration
and is therefore more difficult to evaluate. Figure 2 shows how
the domain integral D varies with 2r. It is important to notice
from this figure that D decreases toward the asymptotic value
of zero, expected theoretically [Neuman and Orr, 1993]) at r 5
0, where the Dirichlet boundaries are in contact. At 2r 5 20,
D differs by less than 4% from the theoretical value of 1/3 for
an infinite domain (r3 `). At 2r 5 100 this difference is less
than 2.5%.
Table 1 also lists Ke1/KG, as computed by means of the

linearized equation (18) and the generalized equation (26), for
sY
2 5 1 and various values of 2r. At 2r 5 0.02, Ke1/KG from
(18) differs by 8.5% from 1.5, the linearized value of KA/KG at
r 5 0; Ke1/KG from (26) differs by 12% from 1.6487, the exact
value of KA/KG at r 5 0. At 2r 5 8, Ke1/KG from (18) differs
by only 1.4% from 1 1 1/6, the linearized value expected
theoretically at r 3 `; Ke1/KG from (26) differs by 1.6% from
K`/KG 5 exp (1/6), the conjectured [Landau and Lifshitz,
1960] value corresponding to an infinite medium. If one ac-
cepts this difference as sufficiently small, one concludes that a
separation distance of eight integral scales between the Dir-
ichlet boundaries is enough to consider the medium as being
unbounded for the purpose of assigning to it an effective hy-
draulic conductivity in this case.

Figure 2. Domain integral D versus 2r.

PALEOLOGOS ET AL.: HYDRAULIC CONDUCTIVITY OF POROUS MEDIA1336



Figure 3 shows how the linearized ratio Ke1/KG varies with
sY
2 , for various values of 2r, according to (18). Figure 4 depicts
similar variations of the generalized ratio Ke1/KG according to
(26). Figure 5 is a cross plot of Figure 4, showing how the
generalized ratio varies with 2r for various values of sY

2 . It is
clear from Figures 3 and 4 that, for decreasing 2r , Ke1 tends
to KA for all sY

2 . At 2r 5 8, Ke1 is only slightly larger than the
conjectured value for an infinite domain, K` 5 KG exp (sY

2 /
6).
Figure 5 shows how fast the asymptote of Ke1/KG is ap-

proached for a given sY
2 as the separation distance grows. The

effect of the Dirichlet boundaries is seen to diminish rapidly as
the characteristic length of the domain increases toward eight
integral scales of Y (2r3 8), and much more slowly thereafter.
The larger is sY

2 , the steeper is the descent of Ke1 toward its
asymptote.
Our results compare both qualitatively and quantitatively

with those of other investigators. For example, Desbarats and
Dimitrakopoulos [1990, Figure 7] and Desbarats [1992, Figure
1] found that for small sY

2 their empirical spatially averaged
equivalent hydraulic conductivity is close to KA when the ratio
between length of the field and integral scale of Y(x) is 0.01
and 0.1, respectively. They also found that their equivalent
effective conductivity is virtually free of boundary influences
when the above ratio exceeds 10. Our results for Ke1/KG in
Table 1, computed through (26), show a very good agreement
with Figure 1 of Desbarats for cubic fields of sides greater than
or equal to 4.

We mentioned in our introduction that Kitanidis [1990] had
derived intuitively a first-order expression for the effective hy-
draulic conductivity of a lognormal K(x) field in a finite flow
domain. Dykaar and Kitanidis [1992, Figure 1] presented cor-
responding values of normalized effective conductivity, versus
the ratio between domain length and integral scale, for a sta-
tistically isotropic Y(x) field with sY

2 5 1 and either exponen-
tial or Gaussian autocovariance. In two dimensions the nor-
malization is done with respect to KG; in three dimensions
with respect to K` 5 KG(1 1 1/6). We compare in Table 2
their three-dimensional results, as read by us off the graph
labeled three-dimensional exponential covariance in Figure 1
of Dykaar and Kitanidis [1992], with our first-order results in
Table 1. The difference between their results and ours is seen
to be at most 1.2%. Some of this difference may be due to the
fact that we place our lateral boundary at infinity. The differ-
ence is, in our view, sufficiently small to conclude that the
intuitive solution of Kitanidis [1990] adequately captures the
effect of boundaries on effective hydraulic conductivity in this
case.

Conclusions
The following major conclusions can be drawn from this

paper.
1. The theory of Neuman and Orr [1993] accounts rigorously

for boundary effects on steady state flow in randomly hetero-
geneous porous media through an appropriate Green’s func-
tion. We developed a first-order approximation of their expres-

Figure 3. Linearized Ke1/KG versus sY
2 and 2r for statisti-

cally isotropic media.

Figure 4. Generalized Ke1/KG versus sY
2 and 2r for statisti-

cally isotropic media.

Table 1. Effective Hydraulic Conductivity in Bounded
Domains

2r D
Ke1/KG

(Equation (18))
Ke1/KG

(Equation (26))

0.02 0.1275 1.3725 1.4513
2 0.2068 1.2932 1.3407
4 0.2722 1.2278 1.2558
8 0.3171 1.1829 1.2007
20 0.3205 1.1795 1.1966
100 0.3252 1.1748 1.1910

Table 2. Comparison With Dykaar and Kitanidis [1992,
Figure 1]

2r

Dykaar and Kitanidis This Paper
(Equation (18))

Ke1/KG
Percent
DifferenceKe1/K` Ke1/KG

0 1.270 1.482 1.500 1.2
2 1.100 1.283 1.2932 0.8
4 1.050 1.225 1.2278 0.2
8 1.015 1.184 1.1829 0.1
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sion for the effective hydraulic conductivity, Ke, of a domain
bounded by two parallel boundaries on which head is constant
in the mean. Our solution applies to a lognormal, statistically
homogeneous and anisotropic conductivity field with an expo-
nential covariance and principal axes normal and parallel to
the mean Dirichlet boundaries. It is valid when the variance,
sY
2 , of the log conductivity, Y 5 ln K, is small, and lateral
boundaries (across which flow is zero in the mean) are sepa-
rated by at least a few integral scales of Y. The effect of large
sY
2 is included via the Landau and Lifshitz [1960] conjecture.
2. The effective hydraulic conductivity tends to the arith-

metic mean, KA, in the limit as the mean Dirichlet boundaries
approach each other. This was anticipated on theoretical
grounds by Neuman and Orr [1993]. As these boundaries sep-
arate, the effective conductivity tends to a known result, K`,
corresponding to infinite media.
3. In statistically isotropic media, the effective conductivity

diminishes rapidly from KA toward its asymptotic value, K`, as
the separation distance between the Dirichlet boundaries ap-
proaches eight integral scales. The larger is sY

2 , the steeper is
this descent of Ke toward its asymptote. At larger separation
distances, the rate at which Ke approaches K` is relatively
slow. When sY

2 5 1, Ke exceeds K` by 1.6% at a relative
separation distance of 8. When sY

2 5 7, Ke exceeds K` by
about 9% at a relative separation distance of 20.
4. The effective hydraulic conductivity we speak of is the

ensemble average (expectation) of values one would obtain by
performing measurements on porous blocks selected at ran-
dom from a statistically homogeneous medium. When the
block size is very small, the mean of the measurements is KA
and the variance of their natural logarithms is sY

2 . As the block
size increases, the mean of the measurements diminishes to-
ward the asymptote of Ke, and their variance diminishes to-
ward zero. If one is willing to consider Ke as being sufficiently
close to its asymptote, and the measurement variance as being
sufficiently close to zero, when the block exceeds a certain size,
then this block size takes the role of a representative elemen-
tary volume (REV) with respect to hydraulic conductivity. It is
clear that the definition of an REV is subjective. Our results
suggest to us that, in media such as those considered here, a

separation distance of at least eight integral scales between the
Dirichlet boundaries may be necessary for this distance to
qualify as an REV scale for practical purposes. The more
heterogeneous is the medium (the larger is sY

2 ), the larger is
its REV scale. Whereas blocks of size equal to or exceeding the
REV scale may be assigned a deterministic hydraulic conductivity
equal to K`, blocks of sub-REV scale must be assigned random
conductivity values with mean Ke and be treated stochastically.
5. Our results agree with those from a spatially power-

averaged expression by Desbarats [1992]. They also compare
well with results published for sY

2 5 1 by Dykaar and Kitanidis
[1992]. These authors used a solution developed intuitively by
Kitanidis [1990] in analogy to one he had derived for nonran-
dom periodic media. We conclude that his intuitive solution
captures adequately the effect of boundaries on the effective
hydraulic conductivity of random media.

Appendix A
The Green’s function in (17) is obtained via the method of

images [Stakgold, 1979],

G~x, x, L! 5
1
4p

z O
j52`

1`
~21!j

$@x1 2 2jL2 ~21!jx1#2 1 ~x2 2 x2!2 1 ~x3 2 x3!2%1/ 2
.

(A1)

CY(x 2 x) is taken to be the anisotropic exponential function

CY~h! 5 sY
2 exp @2~h i

2/l i
2!1/ 2# , (A2)

where h 5 x 2 x, l i are principal integral scales, and repeated
indices imply summation.
Let

* 5 E
2`

1` E
2`

1`

CY~h!
­2

­ x1­x1
G~x, x! dx2 dx3 (A3)

L~2k2, 2k3; x1, x! 5
1
2p E

2`

1` E
2`

1`

CY~x*; x1, x!

z exp ~2ik* ? x*! dx* (A4)

^~k2, k3; x1, x, L! 5
1
2p E

2`

1` E
2`

1`

z
­2

­ x1­x1
G~x*; x1, x, L! exp ~ik* ? x*! dx* (A5)

where k* 5 (k2, k3)
T is wave number vector and x* 5

(x2, x3)
T. With the aid of Parseval’s identity [Paleologos,

1994], * is transformed into

*~x1, x1, L! 5 E
k*

L^ dk* . (A6)

Substituting (A2) into (A4) and setting x* 5 ( x2, x3)
T,

x* 5 (h2/l2, h3/l3)
T, and g 5 uh1u/l1 yields

Figure 5. Generalized Ke1/KG versus 2r and sY
2 for statisti-

cally isotropic media.
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L 5 exp ~2ik* ? x*!
l2l3
2p

sY
2 E

2`

1` E
2`

1`

exp @2~g2 1 x*2!1/ 2#

z exp ~2ik* ? x*! dx*2 dx*3. (A7)

Here k* 5 L*k*, where L* is a 2 3 2 diagonal matrix with
elements l2 and l3, and norms of vectors are represented by
unaccented versions of their boldface symbols. Transforming
(A7) into polar coordinates so that k* is aligned with x* 5
(1, 0)T, and evaluating the angular integral [Gradshteyn and
Ryzhik, 1980, p. 482, equation [3.915.5]], yields

L 5 exp ~2ik* ? x*!l2l3sY
2 E

x*50

1`

x* exp @2~g2 1 x*2!1/ 2#

z J0~k*x*! dx*, (A8)

where J0(k*x*) is the Bessel function of order zero. Combin-
ing the solutions for x1 Þ x1 (or g Þ 0) [Erdelyi et al., 1954, p.
9, equation [23]] and x1 5 x1 (or g 5 0) [Erdelyi et al., 1954,
p. 9, equation [20]] we obtain (for all x1)

L~k9; x1, x! 5 exp ~2ik* ? x*!l2l3sY
2~1 1 k*2!23/ 2

z @1 1 g Î1 1 k*2# exp @2g~1 1 k*2!1/ 2#. (A9)

Next we note that the two-dimensional Fourier transform
(FT) of G, ĝ, satisfies

­2

­x1
2 ĝ 2 ~k2

2 1 k3
2! ĝ 5 2

1
2p

d~x1 2 x1! exp ~ik* ? x*! (A10)

subject to homogeneous boundary conditions. Hence [Green-
berg, 1971]

ĝ 5
c
2k9 O

j52`

1`

~21! j exp @2k9 ux1 2 2jL 2 ~21! jx1u# (A11)

where c 5 (1/ 2p) exp (ik* z x*), and then the second mixed
derivative of ĝ is given by

ĝx1x1 5
­2ĝ

­ x1­x1
5 2

ck9

2 O
j52`

1`

exp @2k9 ux1 2 2jL 2 ~21! jx1u#

1 c O
j52`

1`

d~x1 2 2jL 2 ~21! jx1!

z exp @2k9 ux1 2 2jL 2 ~21! jx1u#. (A12)

Here we have used the relationships

­

­ x1
sgn @x1 2 2jL 2 ~21! jx1#

5 22~21! jd@x1 2 2jL 2 ~21! jx1# (A13)

and

sgn2 @x1 2 2jL 2 ~21! jx1# 5 1. (A14)

This and the properties of the delta function [Paleologos, 1994]
allow us to rewrite (A5) as

^~k*; x1, x! 5
exp ~ik* ? x*!

2p S d~x1 2 x1!

2
k9

2 O
j52`

1`

exp @2k9 ux1 2 2jL 2 ~21! jx1u#D . (A15)

Substituting (A9) and (A15) into (A6) allows us to rewrite* in
Fourier space,

*~x1, x1, L! 5
1
2p

d~h1! E
k*

L9~k*; h1! dk* 2
1
4p

z O
j52`

1` E
k*

k9 exp @2k9 ux1 2 2jL

2 ~21! jx1u#L9~k*; h1! dk* , (A16)

where L9(k*; h1) 5 L(k*; x1, x) exp (ik* z x*).
We note from (17) and (18) that the domain integral overV,

D and the boundary integral over GD1, B can be expressed
using (A3) (or (A16)) as

D 5 ~1/sY
2! E

2L

L

* dx1 (A17)

The definition of the inverse FT of CY(x 2 x) [Dagan, 1989]
and expression (A2) allow rewriting the first term of (A16) as

d~h1!S 12p E
k*

L9~k*; h1! dk*D 5 d~h1!sY
2 exp ~2h1/l1!.

(A18)

Substituting (A16), (A18), and (A9) into (A17) and transform-
ing into polar coordinates, we obtain

D 5 1 2
l2l3
4p O

j52`

1` E
x152L

1L E
k950

` E
u50

2p

k92~1 1 k*2!23/ 2

z @1 1 g~1 1 k*2!1/ 2# exp @2g~1 1 k*2!1/ 2#

z exp @2k9 ux1 2 2jL 2 ~21! jx1u# dk9 du dx1. (A19)

Upon expressing k* in polar coordinates, k* 5 k9 s 5 k9 (cos
u, sin u )T, the norm of k* becomes

k*2 5 k92iL*si2 5 k92~sTL*2 s!

5 k92l1
2R2, (A20)

where the scalar R2 is given by R2 5 «2
2 cos2 u 1 «3

2 sin2 u, and
«2 5 l2/l1 and «3 5 l3/l1. This and the transformations r 5
L/l1, j 5 x1/L , and r 5 l1k9 lead, with x1 5 0, directly to
(19).
As r3 `, the domain integral in statistically isotropic media

is given by

D 5 1 2
1
2 E

0

` r2

~1 1 r2!3/ 2 E
2`

`

~1 1 A uz u!e2~ A1r!uzu dz dr ,

(A21)
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where we have set z 5 rj , A 5 (1 1 r2)1/ 2, and let r 3 `
in the limits of integration. After straightforward integration,
D reduces to

D 5 1 2 E
0

` r2

~1 1 r2!3/ 2
1

A 1 r dr

2 E
0

` r2

~1 1 r2!3/ 2
A

~A 1 r!2 dr . (A22)

Following some tedious algebra, D reduces to 1/3 in the limit
as r 3 ` [Paleologos, 1994] and (26) yields (27).

Appendix B
The solution to (A10), subject to homogeneous boundary

conditions, can alternatively be derived through the method of
eigenfunction expansion [Zauderer, 1983]. Then the second
mixed derivative of ĝ is given, for x 5 0, by

^~k9, x1! 5
p

2L O
n51

` n2

n2p2 1 k92L2 cos
npx1
L . (B1)

Substituting (A9) and (B1) into (A6) allows us to rewrite * in
Fourier space,

*~x1, k9! 5
p

2 L O
n51

`

n2 cos
npx1
L E

k9

L9~k9; x1!
n2p2 1 k92L2 dk9, (B2)

where L9(k9; x1) is given in (A9). The domain integral in
(A17) is given now by

D 5
pl2l3
2L O

n51

`

n2 E
k9

~1 1 k*2!23/ 2

n2p2 1 k92L2 E
2L

L

cos
npx1
L

z F 1 1
ux1u
l1

~1 1 k*2!1/ 2G
z exp S2

ux1u
l1

~1 1 k*2!1/ 2D dx1 dk9. (B3)

Evaluating the integral with respect to x1 [Gradshteyn and
Ryzhik, 1980, p. 196, equation [2.663.3] and p. 198, equation
[2.667.6]] leads directly to (21). Since the integrand of (21) is
not singular at the limits of integration, we can invoke the
Dominated Convergence theorem [Ray, 1988, p. 202] to inter-
change the order of limit and integration and thus obtain
limr30 D 5 0.
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